WA-28-1020

MEMORANDUM

October 23, 1975

To: Gerry Calkins

From: Shirley Prescott,

Subject: Columbia Academy STP Efficiency Study

Scott Jeane and I conducted a routine efficiency study on the above plant on September 9, 1975.

Attached is the standard survey report form showing available plant information and results of lab and field tests.

Flows were measured over a 22 $1/2^{\circ}$ v-notch weir during this survey resulting in an estimated daily flow of .020 MGD. Meter flow resulted in an average .031, a 64% difference in totals. The totalizer reads about 20% lower than the meter tape.

The lab tests indicate an 85% reduction in BOD and 79% reduction in T.S.S. Pounds per day of BOD and T.S.S. respectively were 5#/day and lO#/day. Nutrient analyses as follows:

	ppm	#/day		
NO ₃ -N	10.2	1.7		
NO2-N	0.82	.1		
NH ₃ -N	12.0	2.0		
T. Kjeldahl-N	17.3	2.9		
0-P0 ₄ -P	6.3	1.05		
T-P04-P	8.3	1.05		

The plant was out of chlorine because one of the students working in the plant had on the previous week used 15 gallons of undiluted 12°% Sodium hypo chlorate in the chlorination system. This is normally mixed at one five gallon jug to two parts water; three five gallon containers last one week. By Tuesday (9/9) there was no chlorine, let alone a residual on the first test and the bacteria sample taken at that time showed total coliform of more than 40,000 colonies/100 ml and more than 4000 fecal coliform colonies/100 mls. The sodium hypo chlorate was delivered during the morning and the next sampling showed a residual of .75 ppm in 15 seconds and 1.0 ppm in 3 minutes; total coliform colonies/100 ml had dropped to 60 and fecal to less than 10.

The lab results from this plant seem to indicate something better than actually exists. There was sludge rising in all the basins and showing even in the contact chamber. There was no visible waste sludge facility; possibly it is hauled away.

The debris and scum raked from the primary clarijester is gathered in a pail and dumped outside the fence in an adjacent lot. The plant is in a populated area with a nursing home on one side, a grocery store and gas station in front. A primary school playground is adjacent to the rear and separated only by the fence around the immediate plant area. Columbia Academy is located across the street from the grocery store and plant.

The open space in the plant area is graveled; the area is littered with boxes, empty cartons, chlorine jugs, etc. The lab area is extremely small and dirty. The only positive note I could make on the lab is that it did have running water (hot) and a bar of soap. No indication of any kind of disinfectant nor did it appear that the soap got much use.

All of the hosing, cleaning, sampling and testing is mainly performed by students from the academy. From my observations it would appear that they need a great deal of instruction and supervision in their sampling and testing techniques and, more importantly, in STP hygiene for their own protection as well as others with whom they may come in contact.

The operation of the plant should be handled by more mature competent personnel. Possibly an arrangement could be made with the city of Battleground. The present operation and maintenance chores performed by students between classes presents severe health hazards to the student body of the academy.

The effect on the receiving water is complete degradation because at the time of the survey almost no flow was observed above from the adjacent nursing home. A possible solution to the effect on the receiving water and immediate access to the effluent by young school children would be ground disposal of the effluent.

Generally the plant equipment (excepting the new contact chamber) is in the same condition as the cracked and tilted trickling filter.

SP:ee Attachment

STP Survey Report Form

Efficiency Study

	EIIIC	rency Stud	<u>Y</u>	School Year	(s	
City Columbia F	Plant Type Seco	ndary Pop	. Served_	200	Design_Capacit	5000 g/day
Receiving Water Sal	mon Creek	Perenni	al X J	intermitte	ntr	
via Date <u>9/9/75</u> Surv	unnamed creek vey Period 0900	- 1600 hrs	Survey Pe	ersonnel_	Prescott/J	eane
Comp. Sampling Freq	quency hourly	Sampl	ing Alequo	t 800 mls		
Weather Conditions	(24 hr) clear/dr	Are f	acilities	provided	for comp	lete by-
pass of raw sewage?	Yes	No/Freque	ency of by	pass		·
Reason for bypass		Is by	pass chlor	inated? _	Yes	No
Was DOE Notified?	Dischar	ge - Inter	mittent	Con	tinuous_	
	**************************************	Operation				
Total flow ave	g02	_ How mea	sured	22 ⁰ V-Notch V	Weir	
Maximum flow				_		
Minimum flow	.013	Time of	Min. 10	a.m.		
Pre Cl ₂	#/day	_ Post Cl	2 <u>15 gal/</u>	week		#/day
		.				
	Fiel	d Results				
	Infl	uent		E	ffluent	
Determinations	Max. Min.	Mean	Median	Max. Mi	n. Mea	n Media
Temp °C	28 19		23.5	23 21		22
pH (Units) Conductivity	8.4 7.1		7.5	7.7 7	.4	7.6
(µmhos/cm ²)	630 520		582	560 36	0	545
Settleable Solids (mls/1)	5.0 .6	2.6	2.5	.8 tr	ace2	.2
	Laboratory Re	sults on C	omposites			
	Influent	Efflu	ent	% Redu	action	lbs/day
Laboratory No.	75-4188	4189	BCDapping Chipman			
5-Day BOD ppm	220 395	<u>32</u> 78		東京の教育を出ていることをなりませ	85%	5.
COD ppm F.S. ppm	654	347				
7.N.V.S. ppm 3.S.S. ppm	266 282	<u>216</u> 59			797	10
I.V.S.S. ppm	18				176	
H (Units)	46_		7.8			
hos/cm ²) pidity(JTU's)	520 46	490 30	Maria de la compansión de			

Laboratory Bacteriological Results

Lao No. Sampling		Co Total	lonies/100 m		Cl ₂ Residual			
	TIME	Coliform	Coliform	Fecal Strep	15 sec. 3 min.			
4190	1000	> 40,000	> 4,000		> .05 > .05			
4191	1200	. 400	 < 10		.75 1.0			
4192	1500	60	< 10		1.0 < 1.0			
	1,41,60							
				1				

Additional Laboratory Results

		#/day		
NO3-N bbw -	10.2	1.7		
MO2-N ppm -	0.82	.1		
NH3-N ppm -	12,0	2.0		
T. Kjeldahl-N ppm -	17.3	2.9		
0-204-2 ppm -	6.3	1.05		
T-PO4-P ppm, 471 date 10	<u>oo</u> 8.3	1.05	zve02	

Furnish a flow diagram with sequence and relative size and points of

Operator's Name Mr. Dahl (Science Teacher) Phone No. 687-3161

Type of Collection System

TABE OF COTTECET	OII Dyscen				
Combined Separate X Both	Estimate flow contributed by sur- face or ground water (infiltration				
	MGD				
Plant Loading I	nformation				
Annual average daily flow rate(mgd)	Peak flow rate(mgd)				
Dry	Dry				
Wet	Wet				
COMMENTS:					

STATE OF WASHINGTON

DEPARTMENT OF ECOLOGY

WATER QUALITY LABORATORY

ORIGINAL TO:
COPIES TO:

			DATA	SUMMA	RY				LAB FI	LES
Source Columbia Academy	@ BAT	LE LABON	·L			Colle	cted By_	S. Paese	*** 4 S	cos J.
Date Collected 9-9-75	_	-				Goal,	Pro./Ob	j		
Log Number: 75-	4188	89	10 leff-	91	92					STORET
Station:	INE	eff	1000	1200	1600					
рН	7.9	7.8		e all any constitution de la con					·	00403
Turbidity (JTU)	46.	30.								00070
Conductivity (umhos/cm)@250	520.	490.								00095
СОД	395.	78						· ·		00340
BOD (5 day)	220.	32.								00310
Total Coliform (Col./100ml))4gac	400	60					31504
Fecal Coliform (Col./100ml)			>4∞0	110	110					31616
NC3-N (Filtered)		10.2	Nagara .							00620
NO2-N (Filtered)		6.85								00615
NH3-N (Unfiltered)		12.								00610
T. Kjeldahl-N (Unfiltered)		17.3								00625
O-PO4-P (Filtered)		6.3								00671
Total PhosP (Unfiltered)		8.3						·		00665
Total Solids	654	347								00500
Total Non Vol. Solids	216	216								
Total Suspended Solids	285	59			Married Control of Control of Control					00530
Total Sus. Non Vol. Solids	18	7								
				and the second section is a second section of the second section is a second section of the second section is a						
								1 1		

Note: All results are in PPM unless otherwise specified. ND is 'None Detected' Convert those marked with a * to PPB (PPM X 10³) prior to entry into STORET